A convenient category of topological partial groups
نویسندگان
چکیده
منابع مشابه
Towards a Convenient Category of Topological Domains
We propose a category of topological spaces that promises to be convenient for the purposes of domain theory as a mathematical theory for modelling computation. Our notion of convenience presupposes the usual properties of domain theory, e.g. modelling the basic type constructors, fixed points, recursive types, etc. In addition, we seek to model parametric polymorphism, and also to provide a fl...
متن کاملA convenient differential category
In this paper, we show that the category of Mackey-complete, separated, topological convex bornological vector spaces and bounded linear maps is a differential category. Such spaces were introduced by Frölicher and Kriegl, where they were called convenient vector spaces. While much of the structure necessary to demonstrate this observation is already contained in Frölicher and Kriegl’s book, we...
متن کاملCategory of $H$-groups
This paper develops a basic theory of $H$-groups. We introduce a special quotient of $H$-groups and extend some algebraic constructions of topological groups to the category of H-groups and H-maps and then present a functor from this category to the category of quasitopological groups.
متن کاملA Convenient Category of Locally Preordered Spaces
As a practical foundation for a homotopy theory of abstract spacetime, we propose a convenient category S , which we show to extend a category of certain compact partially ordered spaces. In particular, we show that S ′ is Cartesian closed and that the forgetful functor S →T ′ to the category T ′ of compactly generated spaces creates all limits and colimits.
متن کاملMenger probabilistic normed space is a category topological vector space
In this paper, we formalize the Menger probabilistic normed space as a category in which its objects are the Menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. Then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. So, we can easily apply the results of topological vector spaces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Egyptian Mathematical Society
سال: 2019
ISSN: 2090-9128
DOI: 10.1186/s42787-019-0010-4